High Temperature, Low Relative Humidity PEM Fuel Cell Membranes

Bindu R. Nair Foster Miller Inc May 25, 2004

This presentation does not contain any proprietary or confidential information.

Objectives

To develop a high temperature capable (150°C) PEM fuel cell membranes that can operate at variable relative humidity

To develop PBO/acid membranes that might compare to PBI/acid membranes, the only viable high temperature membrane currently available

To use polymeric acids instead of small molecule acids to improve the stability of the PEM to thermal/humidity cycling

Budget

- Funding for April '03 to Dec '03 -- \$150K
- Funding for May '04 to May '05 -- \$150K

- Subcontractors include:
 - Jesse Wainright, CWRU -- \$60K
 - Ron Eby, UAkron -- \$5K

Technical Barriers and Targets

- DOE Technical Barriers for Fuel Cell Components
 - O. Stack Material and Manufacturing Cost
 - R. Thermal and Water Management
- DOE Technical Target for Fuel Cell Stack System for 2010
 - Cost \$35/kW
 - Durability 5000 hours

Approach

- Current high temperature fuel cell membranes that can operate at 150°C with no pressurization have load cycling and temperature cycling limitations.
- Some of the current membranes are composites of PBI/PA
- This program considers a different substrate (PBO) that enables the use of stronger acids (leads to higher conductivity)
- This program also considers polymeric acids to increase the cycling stability of the membrane

Approach (cont'd)

Project Safety

- Attempting to design for low pressure systems (membranes that can perform at low relative humidity)
- Aqueous processing of ion conducting polymer (MOC)

Project Timeline

Year 1

- Make PEM samples with PBO/phosphoric acid, PBO/sulfuric acid and PBO/polymeric acid
- Evaluate conductivity and leaching of samples
- Milestone: moderate conductivity, non-leaching samples achieved

Year 2

- Make most promising samples into MEAs
- Test single performance at variable RH and T
- Milestone: single cell performance of non-leaching high T, low RH PEM

Technical Accomplishments/ Progress

- Demonstrated that PBO imbibed with PA conducts at high T, low RH
- Demonstrated that PBO imbibed with SA conducts at high T, low RH
- Demonstrated that PBO imbibed with polymeric acids do not conduct well at high T, low RH.
- Demonstrated that it is possible to create nonleaching membranes with respectable conductivity at high T, low RH.

Conductivity PBO PEMs at 150°C, low RH

Sample	Conductivity (S/cm)
PBO/PA	6.02 x 10 ⁻²
PBO/SA	8.45 x 10 ⁻²
PBO/PVPA	3.97 x 10 ⁻⁵
PBO/PSSA	3.33 x 10 ⁻⁵
Non-leaching sample	1.30 x 10 ⁻³

Change in 150°C-conductivity as a function of time at ambient humidity

Interactions and Collaborations

- Prof. Jesse Wainright, CWRU testing and evaluation of PBO samples at high T low RH.
- Dr. Joe Fellner, WPAFB/PR Foster Miller is currently a recipient of Air Force funding to develop composite proton exchange membranes for 120°C operation. Dr. Fellner is actively interested in FMI's fuel cell membrane development programs.
- Prof. Ron Eby, UAkron performs microscopy on FMI composite membranes.
- Prof. Sanjeev Mukerjee performs polarization curves and studies on FMI composite membranees.

Future Work

- Improve conductivity of FMI non-leaching samples
- Convert FMI non-leaching samples into MEAs and test fuel cell performance
- Work closely with UAkron to understand the morphology of FMI non-leaching samples